Welding can be a dangerous and unhealthy practice without the proper precautions; however, with the use of new technology and proper protection the risks of injury or death associated with welding can be greatly reduced.
[edit] Heat and sparks
Because many common welding procedures involve an open electric arc or flame, the risk of burns is significant. To prevent them, welders wear protective clothing in the form of heavy leather gloves and protective long sleeve jackets to avoid exposure to extreme heat, flames, and sparks.
[edit] Eye damage
The brightness of the weld area leads to a condition called arc eye in which ultraviolet light causes inflammation of the cornea and can burn the retinas of the eyes. Goggles and helmets with dark face plates are worn to prevent this exposure and, in recent years, new helmet models have been produced featuring a face plate that self-darkens upon exposure to high amounts of UV light. To protect bystanders, transparent welding curtains often surround the welding area. These curtains, made of a polyvinyl chloride plastic film, shield nearby workers from exposure to the UV light from the electric arc, but should not be used to replace the filter glass used in helmets.[26]
Those dark face plates must be much darker than those in sunglasses or blowtorching goggles. Sunglasses and blowtorching goggles are not adequate for arc welding protection.
In 1970, a Swedish doctor, Åke Sandén, developed a new type of welding goggles that used a multilayer interference filter to block most of the light from the arc. He had observed that most welders could not see well enough, with the mask on, to strike the arc, so they would flip the mask up, then flip it down again once the arc was going: this exposed their naked eyes to the intense light for a while. By coincidence, the spectrum of an electric arc has a notch in it, which coincides with the yellow sodium line. Thus, a welding shop could be lit by sodium vapor lamps or daylight, and the welder could see well to strike the arc. The Swedish government required these masks to be used for arc welding, but they were not used in the United States. They may have disappeared.[27]
[edit] Inhaled matter
Welders are also often exposed to dangerous gases and particulate matter. Processes like flux-cored arc welding and shielded metal arc welding produce smoke containing particles of various types of oxides. The size of the particles in question tends to influence the toxicity of the fumes, with smaller particles presenting a greater danger. Additionally, many processes produce various gases (most commonly carbon dioxide and ozone, but others as well) that can prove dangerous if ventilation is inadequate. Furthermore, the use of compressed gases and flames in many welding processes pose an explosion and fire risk; some common precautions include limiting the amount of oxygen in the air and keeping combustible materials away from the workplace.[28]
[edit] Interference with pacemakers
Certain welding machines which use a high frequency AC current component have been found to affect pacemaker operation when within 2 meters of the power unit and 1 meter of the weld site[29].
[edit] Heat and sparks
Because many common welding procedures involve an open electric arc or flame, the risk of burns is significant. To prevent them, welders wear protective clothing in the form of heavy leather gloves and protective long sleeve jackets to avoid exposure to extreme heat, flames, and sparks.
[edit] Eye damage
The brightness of the weld area leads to a condition called arc eye in which ultraviolet light causes inflammation of the cornea and can burn the retinas of the eyes. Goggles and helmets with dark face plates are worn to prevent this exposure and, in recent years, new helmet models have been produced featuring a face plate that self-darkens upon exposure to high amounts of UV light. To protect bystanders, transparent welding curtains often surround the welding area. These curtains, made of a polyvinyl chloride plastic film, shield nearby workers from exposure to the UV light from the electric arc, but should not be used to replace the filter glass used in helmets.[26]
Those dark face plates must be much darker than those in sunglasses or blowtorching goggles. Sunglasses and blowtorching goggles are not adequate for arc welding protection.
In 1970, a Swedish doctor, Åke Sandén, developed a new type of welding goggles that used a multilayer interference filter to block most of the light from the arc. He had observed that most welders could not see well enough, with the mask on, to strike the arc, so they would flip the mask up, then flip it down again once the arc was going: this exposed their naked eyes to the intense light for a while. By coincidence, the spectrum of an electric arc has a notch in it, which coincides with the yellow sodium line. Thus, a welding shop could be lit by sodium vapor lamps or daylight, and the welder could see well to strike the arc. The Swedish government required these masks to be used for arc welding, but they were not used in the United States. They may have disappeared.[27]
[edit] Inhaled matter
Welders are also often exposed to dangerous gases and particulate matter. Processes like flux-cored arc welding and shielded metal arc welding produce smoke containing particles of various types of oxides. The size of the particles in question tends to influence the toxicity of the fumes, with smaller particles presenting a greater danger. Additionally, many processes produce various gases (most commonly carbon dioxide and ozone, but others as well) that can prove dangerous if ventilation is inadequate. Furthermore, the use of compressed gases and flames in many welding processes pose an explosion and fire risk; some common precautions include limiting the amount of oxygen in the air and keeping combustible materials away from the workplace.[28]
[edit] Interference with pacemakers
Certain welding machines which use a high frequency AC current component have been found to affect pacemaker operation when within 2 meters of the power unit and 1 meter of the weld site[29].
No comments:
Post a Comment